Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death.
نویسندگان
چکیده
Centromere protein C (CENPC) is a key protein that has been localized to the inner kinetochore plate of active mammalian centromeres. Using gene targeting techniques, we have disrupted the mouse Cenpc gene and shown that the gene is essential for normal mouse embryonic development. Heterozygous mice carrying one functional copy of the gene are healthy and fertile, whereas homozygous embryos fail to thrive. In these embryos, mitotic arrest and gross morphological degeneration become apparent as early as the morula stage of development. The degenerating embryos demonstrate highly irregular cell and nuclear morphologies, including the presence of a large number of micronuclei. Mitotic chromosomes of these embryos display a scattered and often highly condensed configuration and do not segregate in an ordered fashion. These results describing the phenotype of the mutant mouse embryos indicate that CENPC has a direct role in the mitotic progression from metaphase to anaphase.
منابع مشابه
Time Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse
Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...
متن کاملEfficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9
Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...
متن کاملChk2 Regulates Cell Cycle Progression during Mouse Oocyte Maturation and Early Embryo Development
As a tumor suppressor homologue during mitosis, Chk2 is involved in replication checkpoints, DNA repair, and cell cycle arrest, although its functions during mouse oocyte meiosis and early embryo development remain uncertain. We investigated the functions of Chk2 during mouse oocyte maturation and early embryo development. Chk2 exhibited a dynamic localization pattern; Chk2 expression was restr...
متن کاملCENP-meta, an Essential Kinetochore Kinesin Required for the Maintenance of Metaphase Chromosome Alignment in Drosophila
CENP-meta has been identified as an essential, kinesin-like motor protein in Drosophila. The 257-kD CENP-meta protein is most similar to the vertebrate kinetochore-associated kinesin-like protein CENP-E, and like CENP-E, is shown to be a component of centromeric/kinetochore regions of Drosophila chromosomes. However, unlike CENP-E, which leaves the centromere/kinetochore region at the end of an...
متن کاملI-13 Infertility with Impaired Zona Pellucida Adhesion of Spermatozoa from Mice LackingTauCstF-64
Background: Fertilization is a multistep process requiring spermatozoa with unique cellular structures and numerous germ cell-specific molecules that function in the various steps. In the highly coordinated process of male germ cell development, RNA splicing and polyadenylation help regulate gene expression to ensure formation of functional spermatozoa. Male germ cells express tauCstF-64 (Cstf2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 3 شماره
صفحات -
تاریخ انتشار 1998